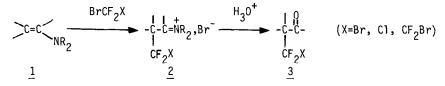
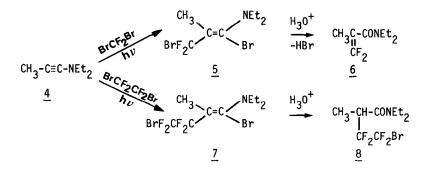
CONDENSATION OF CF2Br2, CF2BrC1 AND BrCF2CF2Br WITH ENAMINES AND YNAMINES

I. RICO, D. CANTACUZENE and C. WAKSELMAN*

C.N.R.S.-C.E.R.C.O.A. 2 à 8, rue H. Dunant 94320 THIAIS, France

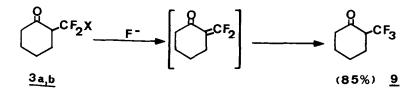

<u>SUMMARY</u> : $BrCF_2X$ (X : Cl, Br, $BrCF_2$) react with enamines and ynamines. A radical chain mechanism is proposed. Halogen (Br or Cl) - fluorine exchange of a halodifluoromethyl-ketones to a trifluoromethylketones using $Bu_4\bar{N}$, F^- , $3H_2O$ is examined.

Recently (1) we showed that the condensation of CF_2Br_2 or CF_2BrCl with different phenoxides and thiophenoxides gives 0 or S alkylated products (ArOCF₂X or ArSCF₂X, X=H,Br). An ionic chain mechanism was postulated involving the difluorocarbene.


Other reactions of CF_2Br_2 are known to involve a radical mechanism like its addition to enol ethers under UV irradiation (2). On the other hand, we showed that perfluoroalkyliodides (R_FI) react spontaneously with enamines ; the reaction proceeds through a radical chain mechanism (3).

In this paper, we study the reactivity of the perhaloalkanes CF_2Br_2 , CF_2BrCl and $BrCF_2CF_2Br$ with unsaturated nitrogen compounds and we compare it with the reactivity of perfluoroalkyliodides with the same substrates.

Enamines like 1-pyrrolidinocyclohexene condense rapidly with the perhaloalkanes $BrCF_2X$ (X : Br, Cl, CF_2Br), in pentane solution, without irradiation or initiation, affording, after hydrolysis, the corresponding α perhaloalkylcyclohexanones (Table I). The reactivity of $BrCF_2X$ is very similar to the one observed in the condensation of R_FI with enamines.


Ynamines do not react spontaneously with $BrCF_2X$. As with perfluoroalkyliodides, UV irradiation is necessary to perform the condensation of CF_2Br_2 and $BrCF_2CF_2Br$ with 1-diethylaminopropyne in pentane solution. Amides <u>6</u> and <u>8</u> are obtained after hydrolysis (Table I).

<u>Table I</u> : Condensation of $BrCF_2X$ with enamines and ynamines

Substrate	X	Product ^(a)	Yield %	bp/mmHg	F _{NMR} (b)
	Br	$3a$ CF_2Br	40	90°C/15	Გር₣ ₂ ₿r=45.8 JHF=8.3
11	C1		65	80°C/15	^{&CF} 2 ^{C1=50} JHF=8.3
II	CF ₂ Br	$\underline{3c} \bigcirc CF_2CF_2Br$	40	95°C/15	δCF ₂ Br=59.5 δCF ₂ =104 JHF=14 JFF=255
CH ₃ C≡CNEt ₂	Br	$\underline{\underline{6}}_{1}$ CH ₃ -C-CONEt ₂ CF ₂	35	45-50°C/0.3	δCF=82.5-89.2 JFF=30
и	CF ₂ Br	8 CH ₃ -CH-CONEt ₂ CF ₂ CF ₂ Br	60	75-80°C/0.3	δCF ₂ Br=58.3 δCF ₂ =102.5 JHF=19 JFF=260

(a) : same procedure as in the condensation of R_FI with enamines and ynamines (3). (b) : F_{NMR} spectra were recorded with a Jeol 60HL instrument with CDCl₃ as solvent and CFCl₃ as internal standard (chemical shift δ in ppm, coupling constant J in Hz). Ketones <u>3a</u> and <u>3b</u> are not very stable (4). They decompose partly to α trifluoromethylcyclohexanone <u>9</u>. This reaction is quantitative if tetrabutylammonium fluoride (Bu_A $\bar{R}F^-$, 3H₂O) is added to a solution of <u>3a</u> (or <u>3b</u>) in THF.

This procedure is a good method for preparing α trifluoromethylketones, much cheaper than the one using CF₃I (3). Bromochlorodifluoromethane (CF₂BrCl) is used industria ly as a fire suppressant (5) and is unexpensive.

Ketone <u>3c</u> is stable when pure. It decomposes partly in the reaction mixture by loosing HF. The decomposition is quantitative if $Bu_4 NF^-$, $3H_2 O$ is used : the unsaturated cyclohexanone <u>10</u> is obtained (yield : 40 % - b.p. = $105^{\circ}C/15$) (6).

Mechanism

In the case of phenoxides and thiophenoxides, we postulated an <u>ionic</u> mechanism involving the difluorocarbene : CF_2 . The formation of hydrogenated by-products (ArOCF₂H and ArSCF₂H) and the fact that only bromoderivatives (ArOCF₂Br and ArSCF₂Br) were obtained from CF_2BrC1 were in favor of this mechanism (1).

In the case of enamines, no hydrogenated by-product is observed. Furthermore, CF_2BrCl gives only α chlorodifluoromethyl (CF_2Cl) ketones. As with perfluoroalkyliodides a <u>radical</u> chain mechanism can be postulated, similar to the one proposed by BUNNETT (7) in aromatic substitutions. The fact that the reactions are inhibited by nitrobenzene is in favor of this mechanism.

$$> N-\dot{C}=\dot{C} + BrCF_2 X \longrightarrow > \ddot{N}-\dot{C}=\dot{C} + \dot{C}F_2 X + Br^-$$
$$> N-\dot{C}=\dot{C} + \dot{C}F_2 X \longrightarrow > N-\dot{C}-\dot{C}-CF_2 X$$
$$> N-\dot{C}-\dot{C}-CF_2 X + BrCF_2 X \longrightarrow > \ddot{N}=\dot{C}-\dot{C}-CF_2 X + \dot{C}F_2 X$$

This mechanism is also probably involved with ynamines.

- α Trifluoromethylketones can be prepared easily from bromochlorodifluoromethane which is advantageous compared to the costly iodotrifluoromethane.

- Perhaloalkanes of the type $BrCF_2X$ react with unsaturated nitrogen compounds by a <u>radical</u> chain mechanism, as opposed to the <u>ionic</u> chain mechanism involved with phenoxides and thiophenoxides.

We plan to extend the study of the reactivity of $BrCF_2X$ with other nucleophiles to better understand the orientation towards one or the other mechanism.

References and notes

- (1) a- I. RICO, C. WAKSELMAN, Tetrahedron Letters, 22, 323 (1981).
 - b- I. RICO, C. WAKSELMAN, Tetrahedron, in press.
 - c- M. SUDA, C. HINO have independently described the action of BrCF₂X (X : Cl, Br) on thiols : Tetrahedron Letters, <u>22</u>, 1997 (1981).
- (2) P. TARRANT, E.C. STUMP, J. Org. Chem. 29, 1198 (1963).
- (3) D. CANTACUZENE, C. WAKSELMAN, R. DORME, J. Chem. Soc. Perkin Trans I, 1365 (1977).
- (4) Some α chlorodifluoromethylketones have been synthesized by acylation of 1-1-difluoroolefines : M. SUDA, Tetrahedron Letters 21, 2555 (1980).
- (5) R.E. BANKS, Organofluorine chemicals and their industrial applications : The Soc. of Chem. Ind. London, 68 (1979).
- (6) All spectroscopic data, elemental analysis and mass spectra are in good agreement with the proposed structures.
- (7) J.F. BUNNETT, Acc. Chem. Res. 11, 413 (1978) and references.

(Received in France 21 May 1981)